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Weighting data appropriately in stock assessment models is necessary to diagnose model mis-specification, estimate uncertainty, and when
combining data sets. Age- and length-composition data are often fitted using a multinomial distribution and then reweighted iteratively, and the
Dirichlet-multinomial (“DM”) likelihood provides a model-based alternative that estimates an additional parameter and thereby “self-weights”
data. However, the DM likelihood requires specifying an input sample size (ninput), which is often unavailable and results are sensitive to ninput. We
therefore introduce the multivariate-Tweedie (MVTW) as alternative with three benefits: (1) it can identify both overdispersion (downweighting)
or underdispersion (upweighting) relative to the ninput; (2) proportional changes in ninput are exactly offset by parameters; and (3) it arises naturally
when expanding data arising from a hierarchical sampling design. We use an age-structured simulation to show that the MVTW (1) can be more
precise than the DM in estimating data weights, and (2) can appropriately upweight data when needed. We then use a real-world state-space
assessment to show that the MVTW can easily be adapted to other software. We recommend that stock assessments explore the sensitivity
to specifying DM, MVTW, and logistic-normal likelihoods, particularly when the DM estimates an effective sample size approaching ninput.
Keywords: data weighting, Dirichlet-multinomial, hierarchical sampling design, stock assessment, Tweedie, WHAM.

Introduction

Integrated fisheries stock assessment models combine multi-
ple sources of data to estimate population dynamics parame-
ters, abundance, and status through time (Maunder and Punt,
2013). The three most common data types are catch (i.e. fish-
ery removals), abundance indices (i.e. surveys), and age/length
composition (i.e. proportions of fish in age or length bin cat-
egories), although many integrated models do not simultane-
ously include all three of these (e.g. Rudd et al., 2021). Time
series of composition data are particularly useful to inform
relative year class strength, that is, years of strong recruit-
ment (Hjort, 1926). Integrated assessments involve specifying
the joint likelihood of parameters given data, and the likeli-
hood of each datum is weighted (explicitly or implicitly) by its
estimated or assumed variance. The relative scale of weights
strongly influences assessment results when the data sources
provide conflicting information about parameters conditional
upon model assumptions (Francis, 2011; Maunder and Punt,
2013), and the absolute value of weights affects the overall
estimate of assessment uncertainty. Given the typical sample
sizes assumed for compositional data, these data will often
overwhelm other types of data in estimation of model param-
eters. As a result, there is a large literature regarding methods
to “downweight” compositional data to avoid assigning them
larger leverage than other data.

The multinomial distribution has typically been used as the
composition data likelihood, which relates the observed pro-
portions to the model expected proportions given a set of pa-
rameters (Francis, 2014). The multinomial arises from the sim-
ple assumptions that for a fixed number of fish ninput and num-

ber of categories C (e.g. age or length classes), the category ob-
served for each fish is independent and the true probabilities
of each category, {π1, . . . , πc, . . . , πC}, are the same for each
fish. The multinomial distribution then results in a vector of
counts {y1, . . . , yc, . . . , yC} of fish in each category, where the
expected proportion E ( yc

ninput
) = πc . Importantly, the sampling

variance of the observed proportion, V ( yc

ninput
) = πc (1−πc )

ninput
, is

completely defined by the mean and ninput and is a decreasing
function of ninput, so that ninput determines the statistical lever-
age (“weight”) of composition data. We refer to this multi-
nomial sample size as ninput because it must be input as data
by the assessment scientist and cannot be estimated as a pa-
rameter within the model (Francis, 2014). Fisheries compo-
sition data typically exhibit more variation than expected by
the multinomial distribution with sample size ninput defined
as the number of measured animals (i.e. they are “overdis-
persed”), for example, because the measurement of each
animal is not statistically independent as assumed in a multi-
nomial distribution. For example, Pennington and Vølstad
(1994) introduced the term “intra-haul correlation” to de-
scribe the common observation that fish from the same haul
are often more similar in age and length than fish from other
hauls. There are two general approaches for handling overdis-
persion and correlations in composition data: (1) continu-
ing to use the multinomial distribution but with a reduced
ninput that represents an appropriate “effective” sample size
n∗, or (2) replacing the multinomial with a distribution that
can reweight ninput to estimate the effective sample size and/or
correlations.
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Researchers have developed a variety of approaches to
estimate input sample size directly from field data, and/or
estimate effective sample size within stock-assessment models.
Crone and Sampson (1997) demonstrated an ad hoc method
for estimating ninput from a two-stage sampling design typi-
cal for commercial fisheries catch age composition, with fish
chosen for ageing nested within boat trip. They developed a
regression model relating ninput to the number of boat trips
sampled and showed that ninput was between the total num-
ber of fish aged and the number of boat trips sampled. This
method has been subsequently extended using alternative
bootstrap or model-based estimators (Stewart and Hamel,
2014; Thorson, 2014; Thorson and Haltuch, 2018). Another
method for calculating ninput is to iteratively fit a stock as-
sessment model using output of the previous run to adjust
ninput. McAllister and Ianelli (1997) proposed to tune ninput

to achieve “internal consistency”, that is, such that the vari-
ance between the observed and predicted proportions at age
matches the multinomial variance using the predicted propor-
tions. Pennington and Vølstad (1994) calculated ninput for the
length composition that would produce the standard error of
the mean length under independent sampling, which in one ex-
ample was about half of the original sample size. Miller and
Skalski (2006) showed how ninput can be calculated for each
category by equating age or length class-specific design-based
variance estimates with the variance equation for those classes
under the multinomial assumption. Francis (2011) suggested
an iterative procedure to estimate effective sample size in as-
sessment models under the similar assumption that it should
be standardized relative to the error in mean age/length. Al-
though using these methods to specify or reweight ninput in the
multinomial is better than ignoring the issue, several draw-
backs remain: (1) they do not propagate uncertainty about
ninput; (2) model results change based on ninput, which hinders
model development and reproducibility; and (3) the time re-
quired to re-run the model makes it difficult to conduct sensi-
tivity runs, simulation studies, and Bayesian estimation.

The alternative to iterative reweighting algorithms is to use
a distribution other than the multinomial. Several distribu-
tions can “self-weight” composition data by estimating one
additional parameter and have been recommended for use in
stock assessment: the Dirichlet (Maunder, 2011; Hulson et al.,
2012), Dirichlet-multinomial (“DM”) using either saturating
(Candy, 2008) or linear parameterizations (Thorson et al.,
2017), and logistic-normal using either additive (Schnute and
Haigh, 2007; Miller et al., 2016; Stock and Miller, 2021) or
multiplicative parameterizations (Cadigan, 2016). Compo-
sition data are often higher or lower than model estimates
for a sequence of adjacent years and age/length bins (e.g.
Francis, 2014 Figure 4), and some replacements for the
multinomial estimate the magnitude of these correla-
tions while also weighting the composition data (e.g.
Berg and Nielsen, 2016). For example, the logistic-
normal can also be extended with additional param-
eters to estimate correlation structures, such as first
and second order autoregressive, AR(1) and AR(2),
and autoregressive moving average (ARMA) processes
(Francis, 2014; Perreault et al., 2020; Fisch et al.,
2021).

In a simulation study, Fisch et al., (2021) found that the
logistic-normal and DM performed better than other likeli-
hoods, and which was best depended on the amount of com-
position data and process error. One limitation of the DM is

that it still requires specifying ninput, which is often unavail-
able due to inability to access raw data (e.g. when sharing
data across jurisdictions or for historical data sets) or costly
for survey teams to produce (e.g. when developing and main-
taining code to bootstrap raw samples), and results depend
somewhat upon the specific value used. The DM also can-
not upweight compositional data, that is, estimate an effective
sample size greater than ninput. In cases when ninput is unavail-
able due to data-access or cost and is therefore fixed at an
arbitrary value with little scientific basis, it might be a nui-
sance that the DM cannot estimate ne f f ective higher than this
arbitrary ninput value. Alternatively, when ninput is available
and accurately represents sampling variability, the fact that
the DM requires ne f f ective < ninput provides an upper bound
on the variance of time-varying parameters.

In this study, we introduce an alternative self-weighting
likelihood for compositional data, the multivariate-Tweedie
(MVTW) distribution. We first describe how the Tweedie dis-
tribution arises in nature from the hierarchical expansion of
field measurements for age and length samples. In particular,
age/length measurements typically arise from a hierarchical
(a.k.a. mulit-stage) sampling design with unequal sampling
probability due to spatially stratified sampling and length-
stratified subsampling. If the inverse-sampling probability fol-
lows a gamma distribution, we show that this gives rise to
the compound-Poisson-gamma (“Tweedie”) distribution. We
then use an age-structured simulation model to show that (1)
the MVTW is more precise than the DM in estimating ef-
fective sample size, and (2) the MVTW can also upweight
age-composition data when needed. Finally, we implement
the MVTW in the Woods Hole Assessment Model software
package (WHAM; Miller and Stock, 2020) and compare its
performance to the DM, multinomial, and logistic-normal
distributions in an application to data for southern New
England–Mid-Atlantic Bight (SNE-MAB) yellowtail flounder.
We find that the MVTW estimates higher effective sample
sizes than (but comparable uncertainty estimates to) the DM.

Methods

We seek to develop a self-weighting likelihood that gener-
alizes the multinomial distribution but incorporates one or
more additional parameters that represent the ratio between
input and effective sample size. To do so, we first discuss a
useful relationship between the multinomial and Poisson dis-
tributions for parameter estimation, summarize the recently
developed MVTW distribution, discuss how the Tweedie dis-
tribution arises in nature from hierarchical expansion of
age and length measurements, and derive properties of that
MVTW likelihood when used to fit age and length composi-
tion data.

Using the Poisson to estimate multinomial
parameters

Researchers have known for decades that a generalized linear
model using a log-linked Poisson distribution can be speci-
fied to give identical estimates to a multivariate-logit-linked
multinomial regression (Birch, 1963; Palmgren, 1981; Baker,
1994). Cormack (1989) also showed how to take advantage
of this relationship for inferences from mark-recapture stud-
ies. However, we are not aware of a derivation showing this
equivalency in a stock-assessment context. In this context, a
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population-dynamics model generates a predicted proportion
πc for each age/length bin c, which is compared with an ob-
served proportion pc that has been assigned a sample size
ninput.

Conventionally, the discrepancy between prediction πc and
observation pcninput is computed using a multinomial distri-
bution:

logL
(
π; ninput, p

) = log
(
dmultinom(p|π, ninput )

)

= log

(
ninput!∏C

c=1

(
pcninput

)
!

C∏
c=1

π
pcninput
c

)

=
C∑

c=1

pcninputlog (πc) + δ1, (1)

where δ1 = log( ninput!∏C
c=1(pcninput )!

) . However, an identical log-

likelihood (up to a constant term) is obtained by using the
product of independent Poisson distributions:

logL
(
π; ninput, p

) = log

(
C∏

c=1

dPoisson(ninput pc|ninput, πc)

)

= log

(∏C
c=1

(
πcninput

)pcninput ∏C
c=1 e−πcninput∏nc

c=1

(
pcninput

)
!

)

=
C∑

c=1

pcninput log (πc) + δ2 + δ3 + δ4, (2)

where δ2 = ninput log(ninput) captures the component
C∏

c = 1
(ninput)

pcninput from the first term in the numerator because

C∑
c = 1

pc = 1, δ3 = − ninput captures the second term in the

numerator because
C∑

c = 1
πc = 1, and δ4 = log( 1∏C

c=1(pcninput )!
)

captures the denominator. This derivation shows that Poisson
and multinomial distributions are proportional, and there-
fore can be used to generate identical maximum likelihood
estimates, asymptotic standard errors, likelihood profiles,
and Bayesian posterior distributions. Furthermore, the two
can be equivalent and therefore used to generate identical
likelihoods (e.g. for use in likelihood ratio tests and the
Akaike Information Criteria) if the integration constants
{δ1, δ2, δ3, δ4} are properly incorporated. This equality is
sometimes called Poissonization (Adhikari and Pitman, 2021,
Chapter 7); said another way, if we have a total count N
that follows a Poisson distribution with intensity μ, and a
multinomial with size N and proportions p, then the resulting
compound distribution is identical to a series of independent
Poisson distributions with intensity μp.

Generalizing the mean–variance relationship

Given that the multinomial likelihood can be replaced with
a vector of independent Poisson distribution, we propose to
use the Tweedie distribution which provides a more flexi-
ble mean–variance relationship than the Poisson distribution.
We acknowledge that there is no general closed-form expres-
sion for the sum of Tweedie random variables (as used dur-
ing Poissonization), and therefore no equivalent version of the
multinomial distribution that arises from a vector of Tweedie

random variables. We instead we refer to the proportions aris-
ing from normalizing a vector of Tweedie distributions a new
“MVTW distribution” (MVTW):

p ∼ MVTW (π, φ,ψ |ninput),

where response p is a vector containing the observed propor-
tions pc = yc∑C

c′=1 yc
arising from expanded count yc for each

category, π is a vector containing the predicted proportion πc,
φ and ψ are Tweedie variance parameters defined below, and
ninput is an “input sample size” that is assumed at a fixed value.
This approach was termed the MVTW distribution by Thor-
son et al., (2022), where it was derived from an thinned and
marked Poisson process for animal foraging. The MVTW is
“multivariate” in the sense that (1) the response p arises from
normalizing a vector of expanded counts y, and (2) its calcu-
lation involves calculating a vector of proportions π . In other
context, a vector of proportions is typically calculated from a
“multivariate logit” link function, and the MVTW is therefore
multivariate in a similar sense as the multinomial. However,
the MVTW has strong constraints on the covariance among
categories V(p), and this is again similar to the multinomial
distribution.

We next provide support for three claimed benefits of using
the MVTW:

(1) It supports composition data that includes zeros, as
well as a continuous proportion pc for each category.

(2) It arises naturally from the process of generating age
and length composition data, where animals are sub-
sampled to measure age/length and then expanded to
calculate proportions pc.

(3) It can account for mis-specification of input sample size
ninput.

To illustrate these claims, we start by specifying a
Poisson distribution, yc ∼ Poisson(λc), where yc ≡ ninput pc

is constrained to the set of non-negative integers yc ∈
{0, 1, . . . , ninput}. However, yc is not in practice constrained to
non-negative integers when fitted in stock-assessment models
but are instead specified such that 0 ≤ yc ≤ ninput. This arises
because pc is typically calculated as a hierarchical expansion
of age or length samples where expansion-factors are derived
from subsampling rates (Crone and Sampson, 1997; Thorson,
2014), or via the action of an age-length key. In practice, stock-
assessment software accommodates this by replacing all fac-
torial functions (which are defined only for integers) with suit-
ably modified gamma functions (where � (X) = (X − 1) ! for
integers X but is also defined for non-integer values).

We next illustrate how hierarchical expansion of age
and length composition samples can be approximated as a
compound-Poisson-gamma process (Foster and Bravington,
2013). A hierarchical sampling design typically results in a
count of fish Xc for each age, and hierarchical expansion
then computes an estimator for the true proportion pc for
each age. However, each age or length sample may have a
different sampling (a.k.a. inclusion) probability, arising from
(1) subsampling rates for measuring age or length of animals
in a given sample, and (2) spatially stratified sampling rates;
these are sometimes termed “first-stage” and “second-stage”
expansion, respectively (Thorson, 2014). Each individual
animal xc is then expanded by the inverse of its sampling
probability (representing the inverse product of sampling and
subsampling rates), where the expansion factor for animal xc
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4 J. T. Thorson et al.

is defined as Zxc. If expansion factor Zxc follows a gamma
distribution, this then results in a compound-Poisson-gamma
process:

Xc ∼ Poisson (λc)
Zxc ∼ Gamma

(
k, θc

)
yc =

Xc∑
x=1

Zxc,

(3)

where k is the shape and θc the scale parameters for
a gamma distribution. If we express these in terms of
E (yc) = πc ninput and define two variance parameters such
that V (yc) = φ(πcninput)

ψ , the compound process can be eval-
uated efficiently as a Tweedie distribution (Kendal, 2004):

yc ∼ Tweedie
(
πcninput, φ, ψ

)
, (4)

where the parameters of the compound-Poisson-gamma

process can be calculated as λc = (πcninput )
2−ψ

φ(2−ψ ) , k = 2−ψ

ψ−1 ,

and θc = φ(ψ − 1)(πcninput)
ψ−1. These Tweedie pa-

rameters {πc, φ, ψ} result in the compound-Poisson-
gamma with the constraint that k is constant across
categories while θc varies among categories (as assumed
in equation 3). We then compute the likelihood for all
age/length bins using a sequence of Tweedie likelihoods,

LMVTW (π, φ,ψ; p, ninput ) =
C∏

c=1
dtweedie(yc|πc, ninput, φ, ψ )

where response yc = ninput pc.
In the following, we optimize this MVTW likelihood

with respect to the following parameters: proportion πc for
each age/length bin, log-variance φ∗ defined such that φ =
exp(φ∗) , and logit-scale power ψ∗ defined such that ψ =
1 + exp(ψ∗ )

1+exp(ψ∗ ) . Variance parameters φ∗ and ψ∗ are defined to
have unbounded continuous support while maintaining the
Tweedie restrictions 1 < ψ < 2 and φ > 0. We assume that
φ∗ and ψ∗ are constant for all age/length bins, although fu-
ture research could explore the consequences of relaxing this
assumption. The resulting Tweedie distribution then has non-
negative continuous support for response yc = pc ninput.

We next define the approximate sample size n∗ as the num-
ber of multinomial samples with the same variance as a given
distribution for age or length composition data. We seek to
calculate n∗ after estimating Tweedie parameters {φ, ψ} by
fitting them in a stock assessment, and call n∗ the “effective
sample size” when it is calculated in this way. We follow Thor-
son and Haltuch (2018) in approximating the effective sample
size by calculating V (pc) = V( yc∑nc

c′= 1 yc′
), that is, the variance

of a ratio where the numerator is the expanded count yc for
a given bin and the denominator is the total count across all
bins. Calculating this involves a second order Taylor series ap-

proximation to V( A
A+B ) where A = yc and B =

nc∑
c′=1

yc′ − yc

are treated as two uncorrelated random variables. After some
algebra (see Thorson and Haltuch (2018) Supplementary Ma-
terial A for details), this then yields:

n∗
c ≈ πc (1 − πc)

π2
c ×

(
φ(ninputπc)ψ

n2
inputπ

2
c

− 2
φ(ninputπc)ψ

n2
inputπc

+
∑nc

c′= 1 φ(ninputπc′ )
ψ

n2
input

) ,(5)

where n∗ is calculated as the median of n∗
c across bins

c for that vector of age or length compositions, that is,
n∗ = Medianc(n∗

c ). Numerical exploration shows that this

Table 1. Quick facts about the MVTW distribution, including how the likeli-
hood can be evaluated numerically, how to calculate effective sample size
for each category n∗

c , and how the median effective sample size can be
further approximated to gain intuition about model behaviour.

Characteristics Details

Likelihood
calculation

LMVTW (π, φ, p; p, ninput ) =
nc∏

c=1
dtweedie(pcninput|ninputπc, φ, ψ )

Effective sample
size by category

n∗
c ≈ πc (1−πc )

π2
c ×

(
φ(ninputπc )ψ

n2
inputπ

2
c

−2
φ(ninputπc )ψ

n2
inputπc

−
∑nc

c′ = 1
φ(ninputπc )ψ

n2
input

)

Where:
n∗≈Medianc(n∗

c )
Simplified
approximation to
median effective
sample size

n∗ ≈ ninput × Median(φ−1e(ψ−1) log(πc ) )

can be further approximated as:

n∗ ∼= Medianc

(
ninput × e(ψ−1) log(πc )

φ

)
. (6)

These properties are summarized in Table 1. We note that it
is not necessary to calculate or report the approximate sample
size n∗. However, n∗ is a simple summary of the variance re-
sulting from ninput and the weighting estimated by the MVTW
distribution. It therefore could be useful to compare across
different assessment models with alternative specification, to
predict the likely impact of changes in ninput under future sam-
pling designs (Thorson et al., 2020), or when measuring the
magnitude of measurement and process errors using ninput and
n∗ (Francis, 2011, Figure 2; Thorson and Haltuch, 2018, Fig-
ure 7).

In summary, we emphasize two interpretations for how the
MVTW distribution arises in nature:

(1) Hierarchical expansion process: First, we interpret la-
tent variable Zxc as the expansion factor associated
with each animal that is measured for age or length
in the raw data (e.g. from spatially stratified sampling
and length-stratified subsampling). We define the mean
expansion factor wc ≡ E (Zxc) = kθc and the variance
vc ≡ V (Zxc) = kθ2

c (see equation 3), such that the co-
efficient of variation is CV = 1/

√
k. In the limit that

each animal in a population has equal subsampling
probability, then the CV → 0 such that k → ∞. Plug-
ging this into Tweedie parameters (see below equation
4), we see that ψ → 1 and the Tweedie approaches
a Poisson distribution in this limiting case, such that
the Tweedie provides a maximum likelihood estimate
that approaches a multinomial likelihood with equiv-
alent input sample size. Alternatively, as the expan-
sion factor Zxc for each animal becomes more variable
(i.e. CV � 1 and ψ → 2), the effective sample size de-
creases relative to the limiting case of equal expansion
rates (see equations 5–6). This latter property makes
sense intuitively given that unequal expansion factors
produce expanded age or length composition vectors
p that are dominated by those few measured animals
with large expansion factors Zxc.

(2) Mis-specified input sample size: Second, the input sam-
ple size ninput might be mis-specified. For example,
some stock assessments specify ninput a priori (i.e.
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Table 2. A comparison of the linear parameterization of the DM and the MVTW in terms of how the distribution arises in nature (the generative process)
and a closed-form expression for each.

Generative process Closed-form calculation

DM A multinomial distribution for age/length composition
data:
yc ∼ Multinomial(π∗, ninput ),
where yc = pt ninput , and selectivity varies randomly in
each sampling effort:
π∗ ∼ Dirichlet(π, ninputθ ).

… yields a linear parameterization of the DM process
yc ∼
Dirichlet.Multinomial(π, ninputθ ),
where yc = pt ninput, and equivalent sample size is
decreased:
n∗ = 1

1+θ
+ θ

1+θ
ninput.

MVTW A process of counting animals of different age/length
categories:
Xc ∼ Poisson(λc ),
where each encountered animal is expanded by an
expansion factor Zxc that varies among individuals:
Zxc ∼ Gamma(k, θc ).

yc =
Xc∑

x=1
Zxc

… yields a MVTW distribution.
pc ∼ MVTW (π, φ,ψ |ninput ),
where equivalent sample size can be greater or less
than input sample size:
n∗ = ninput × Median(φ−1e(ψ−1) log(πc ) ).

Table 3. Summary of differences between the DM and MVTW
distributions.

Characteristics DM MVTW

Number of data-weighting
parameters

1: log(θ ) 2: log(φ) and
1 ≤ ψ ≤ 2

Can upweight data above ninput No Yes
Can estimate heteroscedasticity No Yes
Numerically stable for all values
of parameters

Yes No1

Could be extended by making
data-weighting parameter(s) a
function of age/length bin

No Yes

Ratio of effective and input
sample size is only a function of
data-weighting parameters

Yes No2

Can use AIC or likelihood-ratio
test to compare with multinomial
distribution

Yes No

Parameter estimates are invariant
to a proportional change in input
sample size

No Yes

1The MVTW likelihood becomes multimodal as power ψ approaches 1, and
in practice we recommend constraining 1.05 < ψ < 2 to promote numerical
stability.
2The effective sample size of the MVTW depends on data-weighting param-
eters as well as bin proportions whenever power ψ > 1.

ninput = 100) or based on the number of sampled fish
or survey tows. In these cases, the “weight” associated
with each sample Zxc will be systematically greater
or less than one; intuitively, each of ninput animals
sampled in the multinomial distribution represents wc

“effective” samples from the age/length distribution.

We further compare the Tweedie and DM models in terms
of how the distribution arises in nature (Table 2) and how they
differ in practice (Table 3).

Simulation experiment

To explore the performance of the new MVTW likelihood,
we compare it with the existing linear-parameterization of the
DM likelihood (Thorson et al., 2017) within an age-structured
simulation and estimation package, CCSRA (https://github.c
om/James-Thorson/CCSRA). This package has been used in
numerous prior simulation studies (Thorson and Cope, 2015;

Thorson and Kristensen, 2016; Thorson et al., 2018; Winker
et al., 2020), and includes code to simulate and estimate pop-
ulation and fishery dynamics. The package is implemented in
the R statistical environment (R Core Team, 2021) and esti-
mates fixed effects using maximum likelihood while integrat-
ing stochastic variation in recruitment via R-package TMB
(Kristensen et al., 2016). We have added the MVTW distri-
bution to the package for purposes of this analysis.

We use package CCSRA to simulate data arising from age-
structured population dynamics driven by fishery removals.
The fishing mortality rate Ft follows a Gompertz effort-
dynamics model (Thorson et al., 2013) that results in increas-
ing and then decreasing fishing mortality (a “two-way trip”).
We specifically simulate dynamics over 20 years for ages 0–20,
given von Bertalanffy growth rate K = 0.2 year−1 and L∞ =
100 cm, weight-at-length W = 0.01 × L3.01, knife-edge ma-
turity at age 3, mortality rate M = 0.3 year−1, a Beverton-
Holt stock-recruit function with steepness h = 0.86, average
unfished recruitment R0 = 109 where recruitment variability
follows a lognormal distribution with log-standard deviation
σR = 0.4, and logistic fishery selectivity with 50% selection
at age-3 and logit-slope of 1.0. An abundance index is avail-
able in each year that is proportional to exploited abundance,
where measurement errors follow a lognormal distribution
with a log-standard deviation σI = 0.1, fishery catches are
known without error, and age-composition samples are avail-
able from multinomial subsamples of fishery catches. These
settings provide a relatively simple and informative example
assessment with low process-error and precise data inputs,
useful to illustrate the behaviour of compositional likelihoods
under well-behaved conditions.

We explore estimation model performance using a 3-by-3
factorial cross of two factors:

(1) True compositional sample size: We explore high,
medium, and low sample-size scenarios for compo-
sitional data involving 100, 40, or 10 fishery age-
composition samples per year.

(2) Mis-specified input sample size: We also explore three
scenarios where input sample size is substantially in-
flated relative to the true variance of age-composition
samples (i.e. where ninput is specified as 2.4 times the
true value), slightly inflated (ninput is 1.2 times the true
value), or set too low (ninput is 0.6 times the true value).
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For each simulated data set, we fit the age-structured es-
timation model using either the DM or the MVTW distri-
bution and record their estimates of effective sample size.
We then replicate each configuration 50 times, for a total of
3 × 3 × 2 × 50 = 900 total estimation model fits. In each
replicate r, we record the average across years of effective sam-

ple size nr = 1
20

20∑
t = 1

n∗
rt and the estimate of recruitment N0t ,

and compare these with true values. We specifically record the
epsilon bias-correction estimator of recruitment to account
for retransformation bias (Thorson and Kristensen, 2016).
The epsilon estimator acknowledges that recruitment devi-
ation estimates δt are penalized towards the Beverton-Holt
function, but are lognormally distributed and hence exponen-
tiated when calculating recruitment N0t = f (SBt )eδt . There-
fore, calculating the expected recruitment E(N0t ) requires ac-
counting for the standard error of δt , which epsilon-correction
does automatically in a way that generalizes alternative meth-
ods (Methot and Taylor, 2011; Thorson, 2019). We explore
performance when estimating recruitment because (1) bias in
estimated recruitment across years is informative about bi-
ased population scale, and (2) recruitment is more variable
than other population-dynamics measures and has a high-
experimental power for detecting performance differences.

Case-study demonstration

We also demonstrate the utility of the MVTW distribution in
stock-assessment packages that are used for real-world assess-
ments by implementing it in the R package WHAM (Miller
and Stock, 2020; Stock and Miller, 2021). We then compare
alternative configurations of the model fitted to the south-
ern New England/Mid-Atlantic yellowtail flounder data set,
which is used as the basic example for the package. The data
set for this stock is structured with six age classes (ages 1–
5, and 6 +, where 6 + is an accumulator group) for years
1973–2016, with freely estimated, age-dependent natural
mortality and dynamics driven by one fishery that generates
age-composition data for all years. It also includes empirical
weight-at-age data, as well as indices of abundance and age-
composition samples from two surveys for 1973–2016. We
configured selectivity and recruitment as in model 1 in the ex-
ample 1 script available with WHAM, with three age-specific
selectivity blocks and annual log-recruitment as independent
Gaussian random effects with estimated mean.

We fit these data using four configurations which differ in
how fishery and survey age-composition data are fitted:

(1) Multinomial: Using the input sample size of 100 for
the fishery and 50 for each of two surveys.

(2) DM: Estimating three additional parameters represent-
ing the downweighting ratio for the fishery and each of
two surveys.

(3) MVTW: Estimating six additional parameters, two
each for the fishery and each of two surveys, governing
the weighting ratio for each fleet.

(4) Logistic-normal: Estimating three additional parame-
ters representing the variance for the fishery and each
of the two surveys.

and see Appendix B of Stock and Miller (2021) for the like-
lihood for each configuration. We compare models in terms
of estimating fishing mortality, recruitment, and spawning

biomass, as well as estimated effective sample size for the DM
and MVTW models for the fishery and each survey.

Results

We first explore the properties of the MVTW distribution,
specifically calculating the properties of the MVTW as a func-
tion of variance parameters (Figure 1). When the power pa-
rameter ψ = 1 (blue line in bottom row of Figure 1), the co-
efficient of variation of bin proportions is identical to a multi-
nomial distribution such that effective sample size n∗

c is iden-
tical regardless of estimated proportion πc for that age/length
bin. By contrast, when ψ > 1 (green and yellow lines in bot-
tom row of Figure 1), the coefficient of variation decreases
slower than the multinomial distribution as a function of pro-
portion πc, such that effective sample size n∗

c decreases for
age/length bins with higher proportional abundance. In gen-
eral, n∗

c decreases proportionally for all bins with increasing
parameter φ (Figure 1 middle row), and increases proportion-
ally with increasing input sample size ninput (Figure 1 top row),
such that an increasing ninput can be exactly offset by a pro-
portional decrease in parameter φ. Finally, the effective sam-
ple size n∗ can exceed input sample size ninput (i.e. data are
upweighted relative to a multinomial distribution) whenever
φ < Medianc(e(ψ−1) log(πc ) ) (see equation 6).

The simulation experiment shows that the DM and MVTW
estimate different effective sample sizes n∗ depending upon the
rate of data inflation, which results in estimates of the differ-
ent data-weighting ratio (defined as n∗/ninput). When the input
sample size is set too low (left column, Figure 2), the DM con-
sistently estimates a data-weighting ratio, ninput, approaching
the upper bound of 1.0. By contrast, the MVTW upweights the
data to approximately the correct value of 1.66 = 1/0.6, and
is most accurate in the medium and high sample-size scenar-
ios. At the other extreme, when ninput is specified well above
the true value (right column, Figure 2), the DM underesti-
mates the data-weighting ratio in particular when true sample
size is low (i.e. top-right panel). Even when the ninput is speci-
fied at approximately the correct level, the MVTW results in
a more precise estimate of the data-weighting ratio (middle
column, Figure 2), where both DM and MVTW become more
precise (i.e. a tighter distribution around the true value) when
the true sample size is moderate or high (i.e. nsample ≥ 40 in
middle or bottom rows).

These differences in data-weighting ratio result in small dif-
ferences in model performance, that is, in estimates of recruit-
ment (Figure 3). Surprisingly, the MVTW has somewhat worse
performance when ninput is set too low (Figure 3, left column),
and superior performance when ninput is set much too high
(Figure 3, right column). The latter presumably occurs because
the DM downweights the age-composition data more than is
necessary, whereas the MVTW estimates an effective sample
size approaching the true value.

Finally, the alternative age composition likelihoods in an
assessment model for SNE-MAB yellowtail flounder result in
the modest differences in estimates of annual fishing mortality,
recruitment, and spawning biomass (Figure 4). The DM and
multinomial assumptions resulted in the largest and small-
est SSB estimates, respectively; this pattern is inverted for the
estimates of fully selected fishing mortality (as expected for
these two variables), and this arises because the DM estimates
somewhat higher fishery selection for ages 2–3 than the other
models (and particularly relative to the multinomial distribu-
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The multivariate-Tweedie: a self-weighting likelihood and length composition data from hierarchical sampling designs 7

Figure 1. The coefficient of variation (left column, y-axes) and effective sample size n∗
c calculated using the approximation in equation (5) (right column,

y-axes) for a category c having an estimated proportion πc (x-axes) for different values of input sample size ninput (top row) and two data-weighting
parameters φ (middle row) and ψ (bottom row), showing three values in each case (see color panel in left column for each row), and comparing these
with the same values for a multinomial distribution as a reference (dashed line).

tion). The logistic-normal and MVTW assumptions resulted
in estimates intermediate to the DM and multinomial assump-
tions. The MVTW estimates SSB 30% higher than the multi-
nomial and 16% lower than the DM, averaged over the last 10
years (Figure 4). Consistent with the simulation-experiment,
however, the MVTW estimates a somewhat higher effective
sample size (23.0 for fishery, 20.5 and 18.6 for surveys) than
the DM (18.6 for fishery, 17.6 and 15.2 for surveys), and hence
results in estimates somewhat closer to when using a multi-
nomial distribution using the original input sample size (100
for fishery, 50 and 50 for surveys). Meanwhile, the DM and
MVTW estimate uncertainty (Appendix A, Figure S1) that is
generally intermediate between multinomial model (estimat-
ing lowest uncertainty) and the logistic-normal (estimating
highest uncertainty).

Discussion

We have introduced a new “MVTW” likelihood to fit age and
length-composition data in stock-assessment models. This dis-
tribution allows zeros to be fitted in age and length composi-
tion, which is not possible using alternative logistic-normal,
multivariate-lognormal, or Dirichlet distributions but is pos-
sible using the multinomial or DM distributions. We provide

a novel derivation of this likelihood from the hierarchical ex-
pansion of hierarchical sampling designs (as are widely used
worldwide), whereby individual animals are counted and then
expanded when calculating a total proportion which is then
treated as data in many stock-assessment models. We specifi-
cally derive important characteristics of this new likelihood,
including (1) its effective sample size as a function of esti-
mated parameters, (2) that it can allow upweighting of data
in cases when input sample size is unknown, and (3) that it
can estimate heteroscedasticity, whereby age/length bins with
higher proportion are estimated to have proportionally higher
variance than expected under the multinomial or DM distri-
butions. A simulation experiment shows that the new likeli-
hood can perform better than the DM in some cases, while a
case-study confirms that it is feasible to implement for real-
world assessments. Both simulation and case-study examples
involve models implemented using TMB, in part because the
dtweedie likelihood function was already available in that
platform, and we have added it as option to the assessment
model WHAM. However, the dtweedie function is also being
added to ADMB-13 in 2022 (J. Ancheta, personal commu-
nication), so the “MVTW” likelihood will soon be feasible to
implement in other models, including Stock Synthesis (Methot
and Wetzel, 2013).
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Figure 2. Estimated data weight (x-axes) for each simulation replicate (y-axes) for the DM (red) or MVTW (blue) data-weighting methods relative to the
true value (black dashed line), given an input sample size that is too low (inflation = 0.6, left column), slightly too high (inflation = 1.2, middle column), or
substantially too high (inflation = 2.4, right column), when true sample size is low ( Nsamp = 10, top row), moderate ( Nsamp = 40, middle row), or high (
Nsamp = 100, bottom row). Each panel also shows the root-mean-squared-log-ratio of estimated and true effective sample size (top-right numbers),
where a value close to 0 would indicate optimal performance.

We have introduced the MVTW likelihood in part via anal-
ogy to the equivalence between properly specified Poisson and
multinomial distributions. Although these distributions are
equivalent in terms of maximum likelihood estimates, asymp-
totic standard errors, and model selection, they are not equiv-
alent in terms of properties when simulating new replicated
data sets (e.g. for use in simulation residuals or as an op-
erating model of a simulation experiment). Using a Poisson
distribution to simulate frequencies at age would result in vari-
ation in total sample sizes across simulation replicates, and
this also occurs for the Tweedie distribution. However, this
simulated variation in total sample size may not be realis-
tic because the total number of age observations is often a
function of cost, and the total captured in a tow is a func-
tion of the density of fish. One response is to re-scale the vec-
tor of simulated observations at age so that they add up to
the input sample size, such that the total amount of data is
constant across simulated observations and the outcomes for
each category are still variable. However, such a transforma-
tion of the simulated MVTW observations would result in a
multivariate observation that departs from the MVTW used
to generate the untransformed observations. This ability to
estimate but not properly simulate data is analogous to quasi-

likelihood and generalized estimating equations (GEE) meth-
ods, which can estimate parameters but not necessarily be
used in simulation studies (Fieberg et al., 2009). We therefore
recommend further research to simulate data from a MVTW
distribution while conditioning upon a fixed value for the sum
across bins.

We noted that the MVTW as defined here is a vector of
independent Tweedie random variables. For some types of
age composition observations that are formed by applying
proportions at length to age-length keys, this assumption is
not met because applying the same proportions at length to
each age induces correlation among the age-specific observa-
tions (Miller and Skalski, 2006). To relax this independence in
the context of a Tweedie distribution, Furman and Landsman
(2010) describe a “common shock model”wherein a common
Tweedie distributed random variable is added to a vector of
independent Tweedie random variables with different param-
eters to the former. This is analogous to similar developments
of a “multivariate Poisson”distribution, and results in positive
correlation among bins. The covariance structure of MVTW
random variables was relaxed further by Jorgensen (2013).
Future research could explore these extensions to the likeli-
hood proposed here.
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The multivariate-Tweedie: a self-weighting likelihood and length composition data from hierarchical sampling designs 9

Figure 3. Error in annual recruitment (y-axis, in billions) for each of 20 years (x-axis) in replicates of a simulation experiment, specifically showing the 10%
and 90% percentiles (shaded area) and median error (solid lines) for the DM (red) or MVTW (blue) models. The simulation experiment involves a 3-by-3
factorial cross of three true sample sizes (rows) and degrees of inflation (columns), where we also list the root-mean-squared error for all years and
replicates (top of each panel). Note that y-axis range is identical across rows of the panel figure, and different among columns.

Similarly, residuals for composition data are often corre-
lated for adjacent years and ages (Francis, 2014, Figure 4;
Hrafnkelsson and Stefánsson, 2004, Figure 4). Some research
has argued that these correlations can be implicitly addressed
by using a metric that incorporates correlations when tun-
ing composition data (Francis, 2011, 2014, 2017). However,
composition data often arise from a “fleet” that also provides
catch or abundance-index data, and in some cases the cor-
related residuals might also be informative when interpret-
ing other data from that fleet. For example, analysts may
want to condition upon correlated residuals in fishery age-
composition data when assigning fishery catch to different
ages, or condition upon correlated residuals in survey age-
composition when interpreting an abundance index. In these
cases, we argue that it is helpful to develop a state-space model
that incorporates time-varying selectivity and/or growth. By
doing so, random effects are conditioned-upon when inter-
preting age/length composition data, catches, abundance in-
dices, or other model components, and this ensures that cor-
related residuals attributed to random effects are used when
interpreting all data jointly. Recent research suggests that
model-based data weighting can improve estimates of time-
varying processes (Xu et al., 2020), but there is relatively
little research comparing performance among model-based

methods (although see Fisch et al., (2021)). Similarly, stud-
ies show that data-weighting cannot by itself address mis-
specified selectivity or growth (Punt, 2017; Stewart and Mon-
nahan, 2017; Wang and Maunder, 2017), and hence at-
tributing correlated residuals to time-varying processes (rather
than the distribution for composition data) could be help-
ful (although also see Szuwalski (2022) for cautions). We
re-iterate Francis (2011, Figure 2) in noting that the esti-
mated magnitude of process errors can be used to diagnose
model mis-specification (Thorson and Haltuch, 2018, Fig-
ure 7). We therefore recommend future research to investi-
gate which data-weighting method has the best performance
when partitioning variance into multiple measurement and
time-varying processes, and hypothesize that having multi-
ple admissible likelihoods to select from (e.g. DM, MVTW,
and logistic-normal) will likely improve optimal performance
in this context. Similarly, we recommend further research re-
garding model-selection and diagnostics to select between (or
combine) results from different data-weighting methods.

There are alternative ways to model age-specific observa-
tions in assessment models than we used here. For exam-
ple, SAM (Nielsen and Berg, 2014) is another state-space
age-structured model that treats the numbers at age for
surveys as multivariate lognormal observations rather than
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Figure 4. Comparison of estimated fishing mortality rate (top),
recruitment (middle), and spawning biomass (bottom) in each year (x-axis)
for the yellowtail flounder case study fitted using WHAM using a
multinomial, DM, MVTW, or logistic-normal (see top legend for colors),
showing the maximum likelihood estimate (solid line) and 95%
confidence interval (shaded area).

separately modeling the observed aggregate catch or indices
and age composition. This multivariate lognormal distribu-
tion can then be inflated relative to an estimate of the multi-
variate lognormal sampling error that arises from hierarchi-
cal expansion of sampling data (Berg and Nielsen, 2016). The
MVTW could also be an alternative to the multivariate log-
normal for these observations while naturally allowing zero
observations that occur for some age classes in stocks with
low sample sizes or large maximum ages.

Finally, we also note that DM and MVTW distributions
both require an input-sample size ninput that is used as start-
ing point during data weighting. By contrast, the alterna-
tive logistic-normal likelihood does not use information about
input-sample size, which can be a strength (when this informa-
tion is unavailable) or a weakness (when analysts know that
sample sizes have changed over time but cannot supply this in-
formation to the model). We showed that the MVTW is insen-
sitive to the value ninput, where a change in ninput will be exactly
offset by a proportional change in variance parameter φ such
that effective sample size remains unchanged (i.e. the MVTW
distribution has the same stated strength as the logistic-normal

likelihood). However, we still emphasize the continued im-
portance of using bootstrapping or model-based estimators
to generate ninput for two reasons. First, ninput may differ sub-
stantially among years, for example, when sample sizes or sur-
vey designs change over time (O’Leary et al., 2020), and both
DM and MVTW would propagate information about well or
poorly-sampled years, while still proportionally up- or down-
weighting these data across years (thus the MVTW addresses
the stated weakness of the logistic-normal likelihood). Second,
this ninput remains a useful guidepost for model interpretation,
that is, where substantial down-weighting can diagnose mis-
specification of selectivity or other time-varying processes and
predict consequences of changing field sample sizes (Thorson
et al., 2020). We therefore recommend that continued research
regarding age and length-composition likelihoods occur in
parallel with real-world efforts to estimate input-sample-sizes
directly from field sampling data.

Supplementary Data

Supplementary material is available at the ICESJMS online.

Data availability statement

The data used in the yellowtail flounder case study are dis-
tributed with the R package WHAM (https://github.com/tim
jmiller/wham), and the MVTW distribution is available within
release 1.0.7. Similarly, the simulation experiment used release
1.3.0 of R package CCSRA (https://github.com/James-Thors
on/CCSRA).

Author contributions

JT developed the MVTW distribution, derived its analytical
properties, and identified its linkage to hierarchical expan-
sion of multistage sampling designs. JT and TM refined its in-
terpretation, parameterization relative to compound-Poisson-
gamma process, and identified difficulties with simulation. JT
modified package CCSRA to include the MVTW distribution,
and implemented the simulation study. TM and BS developed
the package WHAM, and JT and TM modified it to include
the MVTW distribution. TM and BS developed the case study,
and JT, TM, and BS implemented the case study. JT led writ-
ing, and all authors contributed to interpretation, writing, and
editing.

Conflict of interest statement

The authors have no conflicts of interest to declare.

Acknowledgements

We thank prior discussions with C. Monnahan, J. Sullivan, N.
Cadigan, E. Liljestrand, and J. Bence, which contributed to the
development of ideas explored here. We continue to thank K.
Kristensen, H. Skaug, and other developers of TMB, without
which this research would likely be impossible. We also thank
J. Ancheta for collaborating to add dtweedie to ADMB-13,
and I. Stewart, J. Sullivan, and two anonymous reviewers for
helpful comments on a previous draft.

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/advance-article/doi/10.1093/icesjm
s/fsac159/6710216 by N

orthw
est Alaska Fisheries C

tr. Library user on 14 M
arch 2023

http://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsac159#supplementary-data
https://github.com/timjmiller/wham
https://github.com/James-Thorson/CCSRA


The multivariate-Tweedie: a self-weighting likelihood and length composition data from hierarchical sampling designs 11

References

Adhikari, A., and Pitman, J. 2021. Probability for Data Science. UC
Berkeley. Berkeley, CA.

Baker, S. G. 1994. The multinomial-poisson transformation. Journal of
the Royal Statistical Society: Series D (The Statistician), 43: 495–
504.

Berg, C. W., and Nielsen, A. 2016. Accounting for correlated observa-
tions in an age-based state-space stock assessment model. ICES Jour-
nal of Marine Science, 73: 1788–1797.

Birch, M. W. 1963. Maximum likelihood in three-way contingency ta-
bles. Journal of the Royal Statistical Society. Series B (Methodolog-
ical), 25: 220–233.

Cadigan, N. G. 2016. A state-space stock assessment model for northern
cod, including under-reported catches and variable natural mortality
rates. Canadian Journal of Fisheries and Aquatic Sciences, 73: 296–
308.

Candy, S. G. 2008. Estimation of effective sample size for catch-
at-age and catch-at-length data using simulated data from
the Dirichlet-multinomial distribution. CCAMLR Science, 15:
115–138.

Cormack, R. M. 1989. Log-Linear models for capture-recapture. Bio-
metrics, 45: 395–413.

Crone, P. R., and Sampson, D. B. 1997. Evaluation of assumed error
structure in stock assessment models that use sample estimates of
age composition. In Int. Symp. on Fishery Stock Assessment Models
for the 21st Century, Anchorage, Alaska, EEUU. 8–11 October.

Fieberg, J., Rieger, R. H., Zicus, M. C., and Schildcrout, J. S. 2009. Re-
gression modelling of correlated data in ecology: subject-specific and
population averaged response patterns. Journal of Applied Ecology,
46: 1018–1025.

Fisch, N., Camp, E., Shertzer, K., and Ahrens, R. 2021. Assessing like-
lihoods for fitting composition data within stock assessments, with
emphasis on different degrees of process and observation error. Fish-
eries Research, 243: 106069.

Foster, S. D., and Bravington, M. V. 2013. A poisson–gamma model for
analysis of ecological non-negative continuous data. Environmental
and Ecological Statistics, 20: 533–552.

Francis, R. I. C. C. 2011. Data weighting in statistical fisheries stock
assessment models. Canadian Journal of Fisheries and Aquatic Sci-
ences, 68: 1124–1138.

Francis, R. I. C. C. 2014. Replacing the multinomial in stock assessment
models: a first step. Fisheries Research, 151: 70–84.

Francis, R. I. C. C. 2017. Quantifying annual variation in catchability
for commercial and research fishing. Fisheries Research, 192: 5–15.

Furman, E., and Landsman, Z. 2010. Multivariate Tweedie distributions
and some related capital-at-risk analyses. Insurance: Mathematics
and Economics, 46: 351–361.

Hjort, J. 1926. Fluctuations in the year classes of important food fishes.
ICES Journal of Marine Science, 1: 5.

Hrafnkelsson, B., and Stefánsson, G. 2004. A model for categorical
length data from groundfish surveys. Canadian Journal of Fisheries
and Aquatic Sciences, 61: 1135–1142.

Hulson, P. J. F., Hanselman, D. H., and Quinn, T. J. 2012. Determin-
ing effective sample size in integrated age-structured assessment
models. ICES Journal of Marine Science: Journal Du Conseil, 69:
281–292.

Jørgensen, B. 2013. Construction of multivariate dispersion models.
Brazilian Journal of Probability and Statistics, 27: 285–309.

Kendal, W. S. 2004. Taylor’s ecological power law as a consequence of
scale invariant exponential dispersion models. Ecological Complex-
ity, 1: 193–209.

Kristensen, K., Nielsen, A., Berg, C. W., Skaug, H., and Bell, B. M. 2016.
TMB: automatic differentiation and laplace approximation. Journal
of Statistical Software, 70: 1–21.

McAllister, M. K., and Ianelli, J. N. 1997. Bayesian stock assessment
using catch-age data and the sampling: importance resampling al-
gorithm. Canadian Journal of Fisheries and Aquatic Sciences, 54:
284–300.

Maunder, M. N. 2011. Review and evaluation of likelihood functions
for composition data in stock-assessment models: estimating the ef-
fective sample size. Fisheries Research, 109: 311–319.

Maunder, M. N., and Punt, A. E. 2013. A review of integrated analysis
in fisheries stock assessment. Fisheries Research, 142: 61–74.

Methot, R. D., and Taylor, I. G. 2011. Adjusting for bias due to variabil-
ity of estimated recruitments in fishery assessment models. Canadian
Journal of Fisheries and Aquatic Sciences, 68: 1744–1760.

Methot, R. D., and Wetzel, C. R. 2013. Stock synthesis: a biological and
statistical framework for fish stock assessment and fishery manage-
ment. Fisheries Research, 142: 86–99.

Miller, T. J., Hare, J. A., and Alade, L. A. 2016. A state-space ap-
proach to incorporating environmental effects on recruitment in an
age-structured assessment model with an application to southern
new england yellowtail flounder. Canadian Journal of Fisheries and
Aquatic Sciences, 73: 1261–1270.

Miller, T. J., and Skalski, J. R. 2006. Integrating design-and model-based
inference to estimate length and age composition in north pacific
longline catches. Canadian Journal of Fisheries and Aquatic Sci-
ences, 63: 1092–1114.

Miller, T. J., and Stock, B. C. 2020. The Woods Hole Assessment Model
(WHAM) (Version 1.0) [Computer software]. https://timjmiller.git
hub.io/wham/.

Nielsen, A., and Berg, C. W. 2014. Estimation of time-varying selectivity
in stock assessments using state-space models. Fisheries Research,
158: 96–101.

O’Leary, C. A., Thorson, J. T., Ianelli, J. N., and Kotwicki, S. 2020.
Adapting to climate-driven distribution shifts using model-based in-
dices and age composition from multiple surveys in the walleye pol-
lock (Gadus chalcogrammus) stock assessment. Fisheries Oceanog-
raphy, 29: 541–557.

Palmgren, J. 1981. The fisher information matrix for log linear models
arguing conditionally on observed explanatory variable. Biometrika,
68: 563–566.

Pennington, M., and Volstad, J. H. 1994. Assessing the effect
of intra-haul correlation and variable density on estimates of
population characteristics from marine surveys. Biometrics, 50:
725–732.

Perreault, A. M., Wheeland, L. J., Morgan, M. J., and Cadigan, N. G.
2020. A state-space stock assessment model for american plaice on
the grand bank of Newfoundland. Journal of Northwest Atlantic
Fishery Science, 51: 45.

Punt, A. E. 2017. Some insights into data weighting in integrated stock
assessments. Fisheries Research, 192: 52–65.

R Core Team. 2021. R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing. https://www.
R-project.org/.

Rudd, M. B., Cope, J. M., Wetzel, C. R., and Hastie, J. 2021. Catch and
length models in the stock synthesis framework: expanded applica-
tion to data-moderate stocks. Frontiers in Marine Science, 8: 1119.

Schnute, J. T., and Haigh, R. 2007. Compositional analysis of catch
curve data, with an application to Sebastes maliger. ICES Journal
of Marine Science: Journal Du Conseil, 64: 218–233.

Stewart, I. J., and Hamel, O. S. 2014. Bootstrapping of sample sizes for
length-or age-composition data used in stock assessments. Canadian
Journal of Fisheries and Aquatic Sciences, 71: 581–588.

Stewart, I. J., and Monnahan, C. C. 2017. Implications of process er-
ror in selectivity for approaches to weighting compositional data in
fisheries stock assessments. Fisheries Research, 192: 126–134.

Stock, B. C., and Miller, T. J. 2021. The woods hole assessment model
(WHAM): a general state-space assessment framework that incor-
porates time-and age-varying processes via random effects and links
to environmental covariates. Fisheries Research, 240: 105967.

Szuwalski, C. 2022. Estimating time-variation in confounded processes
in population dynamics modeling: a case study for snow crab in the
eastern Bering Sea. Fisheries Research, 251: 106298.

Thorson, J. T. 2014. Standardizing compositional data for stock as-
sessment. ICES Journal of Marine Science: Journal Du Conseil, 71:
1117–1128.

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/advance-article/doi/10.1093/icesjm
s/fsac159/6710216 by N

orthw
est Alaska Fisheries C

tr. Library user on 14 M
arch 2023

https://timjmiller.github.io/wham/
https://www.R-project.org/


12 J. T. Thorson et al.

Thorson, J. T. 2019. Perspective: let’s simplify stock assessment by re-
placing tuning algorithms with statistics. Fisheries Research, 217:
133–139.

Thorson, J. T., Arimitsu, M. L., Levi, T., and Roffler, G. H. 2022. Diet
analysis using generalized linear models derived from foraging pro-
cesses using r package mvtweedie. Ecology, 103: e3637.

Thorson, J. T., Bryan, M. D., Hulson, P.-J. F., Xu, H., and Punt, A. E.
2020. Simulation testing a new multi-stage process to measure the
effect of increased sampling effort on effective sample size for age
and length data. ICES Journal of Marine Science, 77: 1728–1737.

Thorson, J. T., and Cope, J. M. 2015. Catch curve stock-reduction analy-
sis: an alternative solution to the catch equations. Fisheries Research,
171: 33–41.

Thorson, J. T., and Haltuch, M. A. 2018. Spatiotemporal analysis of
compositional data: increased precision and improved workflow us-
ing model-based inputs to stock assessment. Canadian Journal of
Fisheries and Aquatic Sciences, 76: 401–414.

Thorson, J. T., Johnson, K. F., Methot, R. D., and Taylor, I. G. 2017.
Model-based estimates of effective sample size in stock assessment
models using the Dirichlet-multinomial distribution. Fisheries Re-
search, 192: 84–93.

Thorson, J. T., and Kristensen, K. 2016. Implementing a generic method
for bias correction in statistical models using random effects, with

spatial and population dynamics examples. Fisheries Research, 175:
66–74.

Thorson, J. T., Minto, C., Minte-Vera, C., Kleisner, K., and Longo, K.
2013. A new role of effort dynamics in the theoryof harvest popula-
tions and data-poor stock assessment. Canadian Journal of Fisheries
and Aquatic Sciences, 70: 1829–1844.

Thorson, J. T., Rudd, M. B., and Winker, H. 2018. The case
for estimating recruitment variation in data-moderate and
data-poor age-structured models. Fisheries Research, 217:
87–97.

Wang, S.-P., and Maunder, M. N. 2017. Is down-weighting composi-
tion data adequate for dealing with model misspecification, or do
we need to fix the model? Fisheries Research, 192: 41–51.

Winker, H., Carvalho, F., Thorson, J. T., Kell, L. T., Parker, D., Kapur,
M., Sharma, R., et al. 2020. JABBA-select: incorporating life history
and fisheries’ selectivity into surplus production models. Fisheries
Research, 222: 105355.

Xu, H., Thorson, J. T., and Methot, R. D. 2020. Comparing the per-
formance of three data-weighting methods when allowing for time-
varying selectivity. Canadian Journal of Fisheries and Aquatic Sci-
ences, 77: 247–263.

Handling Editor: Ernesto Jardim

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/advance-article/doi/10.1093/icesjm
s/fsac159/6710216 by N

orthw
est Alaska Fisheries C

tr. Library user on 14 M
arch 2023


